Incorporating sustainability into dietary guidelines: UK experience & [some!] global perspectives

NNR2022 diet & sustainability seminar
24th Sep 2020

Dr. Kerry Ann Brown
Assistant Professor LSHTM, UK
kerry.brown@lshtm.ac.uk
Outline

UK dietary guideline experience [2016-2018]
- Diet optimisation modelling & qualitative consumer research
- FBDG sustainability assessment – post hoc 2016 & recent work

Global perspectives
- ‘Unintended and / or global’ consequences of UK FBDG
- Using water sustainability metrics
- What if there is no ‘average’ diet? India diet pattern analysis
- FAO active & supportive of sustainable dietary advice

What are the NNR2022 marginal choices/key decisions?
- Defining the problem [criteria, conflicts, global responsibility]?
- Purpose of DG advice [controversy]?
- Definition of sustainability evolving, transdisciplinary, not perfect!
UK Current DG: Eatwell guide booklet. PHE, 2018

Guide + food group info. + 8 tips for eating well

Tip 2:
Eat lots of fruit & veg
UK DG approach: health-led

- Ad-hoc updates [different bodies over time: FSA, DH, PHE]
- Guide = average diet to meet DRV
- Plate segment size via diet optimisation modelling [Oxford]
- Qualitative consumer research [PHE/FSA]
- Post hoc sustainability assessment [Carbon Trust]

UK optimisation modelling: no sustainability?

- Dietary intake data, 2008-2011, N= 1491 [NDNS]
- Food composition data [McCance & Widowson CoFID]
- PHE derived composite foods database [challenging!]

Optimisation modelling to meet revised DRVs
- main constraint: minimal change to diet
- cho free variable [as long as > 50 % EI]

- Identify who meets revised DRVs
- Substitute products to meet revised DRVs:
 - ↓ salt, fat, sugar [associated w/ processed meat?]
 - ↑ fruit, veg., oily fish & fibre [associated w/ plant-based diet?]
UK optimisation modelling constraints: sustainability?

<table>
<thead>
<tr>
<th>NUTRIENTS</th>
<th>Dietary recommendation</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>2250 kcal (9414 MJ)</td>
<td>No increase</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>≥50% of food energy</td>
<td>≥50% of food energy</td>
</tr>
<tr>
<td>Free sugars</td>
<td>≤5% food energy</td>
<td>≤5% food energy</td>
</tr>
<tr>
<td>Fat</td>
<td>≤35% food energy</td>
<td>≤35% food energy</td>
</tr>
<tr>
<td>Saturated fat</td>
<td>≤11% food energy</td>
<td>≤11% food energy</td>
</tr>
<tr>
<td>Protein</td>
<td>Approx. 15% food energy</td>
<td>≥14.5 & ≤15.5% of energy</td>
</tr>
<tr>
<td>Salt</td>
<td>≤6g/2363 mg sodium</td>
<td>≤6g/2363 mg sodium</td>
</tr>
<tr>
<td>Fibre (AOAC)²</td>
<td>30g</td>
<td>≥30g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOODS</th>
<th>Dietary recommendation</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits and vegetables³</td>
<td>At least 5 portions of a variety each day</td>
<td>≥5 portions a day</td>
</tr>
<tr>
<td>Fish</td>
<td>At least 2 portions a week, one of which should be oily</td>
<td>≥2 portions (2*140g) a week, one of which should be oily</td>
</tr>
<tr>
<td>Red and processed meat</td>
<td>High consumers should reduce their intake to the average of the population (70g)</td>
<td>≤70g/day</td>
</tr>
</tbody>
</table>

PHE 2016
Qualitative consumer research: no sustainability?

- Interviews: phase 1 (N=152) & Phase 2 (N=80)
- Remove knife & fork, and Eatwell ‘plate’ name
- Drawn images [not photos] & rename Eatwell ‘guide’
- Supporting messages to guide choices [8 tips/food group info.]
- High fat, salt & sugar foods outside main image [eat less often]
- Energy reference
- FOP label to guide ↓ fat, salt & sugar food choices
- Water / hydration & limited fruit juice intake
- **Reorder segment name [beans, pulses, fish, meat]**
- **Explicit sustainability messaging x 2**
UK Eatwell Guide: sustainability content x 2

balance of healthier & more sustainable food

2 portions of sustainably sourced fish / wk (1 oily)
Post hoc UK sustainability assessment

Carbon Trust, 2016

- Eatwell Guide 2016 vs. average NDNS diet 2010
- Eatwell Guide = lower environmental impact [GHGe, land, water]

→ Unclear full methodology used: data & underlying assumptions?
Assessing sustainability of FBDG [UK & global]

Milner 2020 [LSHTM] - feasibility!
- ½ UK meat/dairy replaced by f & v + cereals ↓
 GHGe ~20 % & avoid >30,000 premature [CVD / cancer] deaths / yr [Scarborough, 2017]

- UK FBDG incompatible w/ climate, land use, water, N targets

Scheelbeek 2020a [LSHTM] - conflicts!
- UK FBDG related to health gains [f & v: 10 % ↓ mortality] BUT... enviro. gains complex: GHGe ↓ + no change in [blue] water use w/ ↓ ↑ adherence?

Local food system: -ve / +ve gain for biodiversity?

Ferguson-Gow, UCL

Graphic removed as work currently under review
UK FBDG & social responsibility [local & global]?

- ↑ local & seasonal consumption = ↓ GDP / livelihoods elsewhere? *Fair trade equivalent for made using sustainable water practices?*

- ↓ imported foods = ↑ price & ↓ equitable access to foods? *Could non-UK grown foods become out of reach for all but wealthy?*
Sustainability issues specific to regions: India

- Population Growth
- Dietary change
- Groundwater depletion
- Climate change
Water sustainability metrics: consider blue & green

- Water footprint = volume H_2O to produce a food item
- Rainfall [green, most of food production]
 - Animal sourced foods, ↑ water from growing animal feed
 - Climate change disrupting rainfall patterns
- Irrigation [blue, higher risk of harm?]
 - Fruits & nuts ↑ water footprint
 - Competes w/ domestic use & aquifers running dry

- Sustainability of water source [where/when] crucial not just vol.

- Data resource: [Water Footprint Networks website](https://www.waterfootprint.org)
- Transparent sub-national trade/supply chain data unavailable
- Future food label for water footprints?

Harris 2019
No average diet: dietary pattern analysis?

Perez-Rodrigo 2016
Environmental impacts of Indian dietary patterns

Greenhouse gas emissions

Blue water footprints

- Rice & Low Energy
- Rice & Fruit
- Wheat & Pulses
- Wheat, Rice & Oils
- Rice & Meat

Green 2018
FAO & WHO led the development of FBDG around the world

Recent series of webinars

Diet optimisation modelling session some interesting queries:
- Food choice implications of models? Acceptability is important.
- Devise worse/best case scenarios to identify problem nutrients?

FAO diet modelling software SOLVER
- Country specific food intake patterns x energy levels
- Proportions of food groups in food graphic & quantity advice

Consultation on adding sustainability to definition of food security

FAO food-based dietary guideline webinars
Sustainable FBDG – controversy?

WHO pulls support from initiative promoting global move to plant based foods

BMJ 2019 ; 365 doi: https://doi.org/10.1136/bmj.l1700 (Published 09 April 2019)

Cite this as: *BMJ* 2019;365:l1700

New U.S. dietary guideline recommendations take aim at sugar for children and adults

Anxiety-baking may be at a new high during the pandemic, but the 2020 Dietary Guidelines Advisory Committee sours on added sugar.

‘...Agriculture Department has a history of watering down or disregarding committee recommendations in the final guidelines, often because of political pressures.’
Advice if UK were to revise FBDG now

- Characterising problem & purpose of FBDG guides all decisions
 - What do we expect FBDG to achieve?

- Transparent record of data, interpretation & difficult decisions
 - Model parameters
 - Limitations of model
 - Defined trajectory for model / uncertainty estimates
 - Open consultations

- Opportunity to integrate social & natural sciences
 - Work through acceptability/feasibility of dietary patterns
 - Model dietary pattern impacts
 - Calculate risks of combined metrics [health & sustainability]

Brown 2011 Brown 2020
Cautionary advice w/ sustainability metrics

- Variability over time & region
 - Different health & sustainability issues in global food systems
 - What is the impact of Nordic diets on other regions in the world?
- Consider both blue & green water footprints
- Research around the corner?
 - Optimisation with a variety of diets [Scarborough + Green?]
 - Wider system constraints [global impacts]
 - Incorporation of biodiversity [challenging, non-cumulative]
 - Methods to display marginal options / trade-off decisions
 - Improved definitions of [local/global] sustainability
- ↑ transparency of food supply chain
- Standardise enviro. metrics: HESITA db [Poore, Oxford]
Thanks to the following for their time in compiling these slides
- all errors or controversial opinions are mine alone!

Dr. Rosemary Green, LSHTM
Francesca Harris, LSHTM
Dr. Pauline Scheelbeek, LSHTM

Dr. Peter Scarborough, Oxford

Prof. Louis Levy
formerly Head of Nutrition Science at PHE